US009098565B1

a2 United States Patent 10) Patent No.: US 9,098,565 B1
Kumarjiguda et al. 45) Date of Patent: Aug. 4,2015
(54) IN-HOUSE ELEGANT JDBC CONNECTION 7,269,692 B2* 9/2007 Irudayaraj 711/118
POOLING SOLUTION FOR MESSAGE 8,239,535 B2* 82012 Erroretal. 709/226
BROKER 2004/0255307 Al* 12/2004 Irudayargj 719/328
2005/0015356 Al* 12005 Irelandetal. 707/1
n 2005/0038801 Al* 2/2005 Colrainetal. 707/100
(75) Inventors: Meera Deshpande Kumarjiguda, 2006/0200503 AL* 9/2006 Dosa et al. .. . 707/203
Edison, NJ (US); Vanasri Gururaj 2007/0136311 A1* 6/2007 Kasten et al. . 707/10
Upadhye, Old Bridge, NJ (US); Ryan 2008/0294575 AL* 11/2008 JUDE ..ocvvirrirrirriisiisrisns 705/400
Stewart-Gardiner, Budd Lake, NJ (US);
Shankar Kulkarni, Bridgewater, NJ OTHER PUBLICATIONS
(83)’ Venkat Gaddam, Bridgewater, NJ Websphere Message Broker, IBM, Jul. 8, 2009 <http://www-01.ibm.
Us) com/software/integration/wbimessagebroker/>.
(73) Assignee: (C[%l)co Partnership, Basking Ridge, NJ * cited by examiner
(*) Notice: Subject to any disclaimer, the term of this Primary Examiner — Hosain Alam
patent is extended or adjusted under 35 Assistant Examiner — Eliyah S Harper
U.S.C. 154(b) by 958 days.
(21) Appl. No.: 12/575,988 &7 ABSTRACT
(22) Filed: Oct. 8, 2009 Connect.ion pooling .is provedinthe context of middlewar.e. A
request is first received from an application. The received
(51) Int.CL request is forwarded to a back end mechanism. When a
GO6F 7/00 (2006.01) response is received from the ba.ck epd me.chanism, as a
GOGF 17/30 (2006.01) response to the request, 1nf0rmat109 is thalged .from the
(52) US.CL response. A pool of database connections is maintained with
16 GOGF 17/30604 (2013.01) @t least a minimum number of connections open, where the
. . . minimum number of connections is determined independent
(58) Field of Classification Search
of'one or more application threads. To store the information in
USPC ..o 707/999.104, 999.102, 705, 609 .
See application file for complete search histo a database, a database connection is allocated from a pool of
PP P - open database connections created to facilitate access to the
(56) References Cited database. After the information is stored in the database using

U.S. PATENT DOCUMENTS

6,338,089 Bl *
6,850,941 B1*

1/2002 Quinlan ... 709/227
2/2005 Whiteetal. ... /1

110-1
200

the database connection, the database connection is returned
to the pool of database connections.

32 Claims, 9 Drawing Sheets

ﬁ 210

A~
_ ESB Provider with Global CP Capability

I

Message I
Queues

150
A

Back End System

US 9,098,565 B1

Sheet 1 of 9

Aug. 4, 2015

U.S. Patent

walsAS pud yoeg

(v 1ouy) (8)1 "OIA

051

sanang)
a8essoN

A

\,\m 19p1A0Id GSH U
0¢T

US 9,098,565 B1

Sheet 2 of 9

Aug. 4, 2015

(ry o) (91 ‘DI

aseqele(]
v
061

U.S. Patent

AL 4d

A A A A A
SUOT}00UU0d SUOT}O9UU0D SUOor}d3auUuod
aseqeiep aseqeiep ¢ aseqelep ¢

(€-0LT) | (T-0LD) _m (1-0L1)
(speaxyp uoneoridde) | (speaxy uoneorjdde ¢) i (speemy) uoneorjdde ¢)
¢ dnoi3 peary, Z dnoa3 peary 1 dnoig) peary],
Iopiaoid m_wm uo 3uruunt SpeaIy} coﬂwomm%m
v
091

US 9,098,565 B1

Sheet 3 of 9

Aug. 4, 2015

U.S. Patent

wioIsAS puy yorg

sonan()
93esSOIN

A

ovl

C_ Amdeded dO 129010 Wi 19PIA0I] ST D
Y
01z

_

¢ DIA

US 9,098,565 B1

Sheet 4 of 9

Aug. 4, 2015

U.S. Patent

JOATOONY

osuodsey | Jaosuel], [T]

| WEV § s 1 |

m WSIURYOSA ISWLIOJSUBL], 1 OF1

“ UOnEPI[BA jsonboy [N

' s 0ce

u asuodsay] 3 "

el J0$59001d

sye . 1sonbay |

' 108S9201d STE

1| wsrueyooy Ieq[onuo)) | ssuodsoy 1

m Burjood $5900Y ad] WSTUBTOSN “]

! > 0S¢ uonepi[eA |

" Uo1OUUO)) UOT)BULIOJU] JOULIOJSUBL] o ~ =

mﬁm\< T R . G B WY =

| S0 7 i " woisky

Y $5000y B1R(] [¢ Joprwsuel], asuodsey | | 19A1000Y 1senbay m pusioeyq
¢ "DId

US 9,098,565 B1

Sheet 5 of 9

Aug. 4, 2015

U.S. Patent

¢ 'DId

Burjood uonoaUU0D BIA
UONBULIOJUT 2101

08¢

A

asuodsal oy} woxj
UOIRULIOJUI UTRIGQ)

0LS

3

M

uoneordde Sunsanbai 03
osuodsar oY) puos§

098

i

osuodsa1 oY) WIoJsuLI],

0s¢

i

asuodsal o) $S990IJ

ors

0£s

SOA

f

asuodsal 3y} epI_A

0cs

i

01¢

O woiy

ON

ssuodsar e QALY

ON

A

v 'DId
P, OIN 01 3s9nbai sy} pusg
09t
1sonbai possaooad
ad oY) WLIOJSUBL],
0osy
M 1senbai oy ssa00ig
vy sox
Omﬂ/\
1sonbai oy ajepIfEA
M
0Ty ﬂ
15anbal B 0A1099Y
Y
87

US 9,098,565 B1

Sheet 6 of 9

Aug. 4, 2015

U.S. Patent

. I0AI0S (I
08¢ ! |
| | 099
WSTUBYOSA] WSIUBYISA TORIUISUELL, VASN
A vonerado gQ V| ssa00y BIR(Y sV osuodsay asuodsay
0L9 599 §$9 m
x 4 t "
WSTUBYDD 00 CSTUBYOIN m
059 AP d <> JUSWYSI[qBISD
o1epd] dD UORISUUO)) . !
—— \,\/I\\\»/_ Juonoouuo) gd |
v 0v9] s ; m
B[[0nu0) g0 B0) w
WSIURT oo P oeY
uoneINZyUO)) REVAN 1A% WSTUBYOAN 10A1000Y \,\m 09
BIEd 4O * senboy [“|uoneonuoymny (€| senboy ¢ rmo:com
oy m
°29 029" 519" 019" m

US 9,098,565 B1

Sheet 7 of 9

Aug. 4, 2015

U.S. Patent

8 DI

103[qo 991n0g eIR(Q

A 100d uonoouuos 300

098

Iaddeip J00g
UOI102UU0)) INISISY

0S8

V| uonsouuod € 10

0v8

/| OIPIXBIA 9181

0¢e8

A

UOT}O9UU0 A10)06]

A

SuoIddUU0)

A

L "DOId

Jood uonoeuuoo 01 orq

08L

S[pueY g Y WISy
A

1sanbai oy 21nd9Xy

0LL

A

UOI}02UU0 g(J Y}

09L

JOJ 9[pueY B A0y
A

[ood uo1309UU0d WO}
Uonoauu0d g(J © Isanbayy

0SL

[ood uonoouu0o
dd [e1u] 9181y

(sAndyXRW ‘Q[pIxeW ‘O[p[uI ‘3-9)

s1o1owered J0) aaoLay

0¢38

H

~OOQ UOTId2UUO0I B

V| Jo oouelsur ue 91BaI)

018

oY
OvL

0¢L

s MQ

[00J UOTId2UU0))
aq [en]

1

UOTJBULIOJUI O 3sIed

0cL

A

01L

d(Ul OJUl 210)8
01 15onbal B ALY

US 9,098,565 B1

Sheet 8 of 9

Aug. 4, 2015

U.S. Patent

6 DId
13[[0D | |opeiddn g AJIpoIN ALIM peay
o3eqien qa dd BIR(Q e1e(q BIR(]
% RN % AR
066 086 0L6 096 056 06
1sanbay 1sonbay
uonerad(SS900Y
Vad dda % BIR(]
0€6 0¢C6
15onbay $5999
A k:l VvV 4d
016

US 9,098,565 B1

Sheet 9 of 9

Aug. 4, 2015

U.S. Patent

aseqere(]
) 0S0T
01 "DId
TPAL 9A
N
0v0I
SUOT}O3UUO0D
1eqo[3
[00d
/] Uonosuuo) [2qo[H
0€0T]
UON02UUO02 | UONOIUUOD UON0aUUoD B
BUINWY| B oplaOI] 1sonboy]
(€-0201) (z-0201) (1-0201)
(speaxy uoneoridde) ! (spearyy uoneordde ¢) | (speaxy uonesidde ¢)
o %\ ¢ dnoJ3 peary ¢ dnoi3 pearyy, ! I dnoin) peaayy,

Iopraold gSd uo Suruuny speary) qoﬁ.S:a%«

US 9,098,565 B1

1

IN-HOUSE ELEGANT JDBC CONNECTION
POOLING SOLUTION FOR MESSAGE
BROKER

BACKGROUND

1. Technical Field

The present teaching relates to method and system for data
connections. More specifically, the present teaching relates to
method and system for connection pooling mechanism.

2. Discussion of Technical Background

Computer applications have evolved over several decades.
Modern computer applications often manifest themselves in
an infrastructure that involves layers of support. In addition,
due to diversity of platforms on which a computer application
user can operate, more and more computer applications are
designed to support interfaces to facilitate the applications to
interact with users of different platforms. For example, some
users may interface with a computer application via an appli-
cation designated window displayed on a desktop computer
(e.g., PowerPoint) but other users may interact with the same
underlying computer application via an Internet interface
which allows multiple users across the Internet to share the
same PowerPoint application. As another example, an
account management system may allow an end user (cus-
tomer) to interact with an Internet interface to change account
information or check account balance information. The same
account management system, however, may also allow a bill-
ing specialist from the service provider to conduct monthly
billing activities. In this case, the billing specialist may inter-
face with the account management system differently. In
addition, when different users interface with an application
differently, the underlying communication protocols used
may also differ. In an account management system example,
some may use XML and some may use FTP.

To make a computer application, especially a network
based application, perform its core functionalities, an appli-
cation is often divided into a front end and a back end. Front
end applications are those used to interface with different
users. Back end applications are those used to perform certain
core functionalities of the application. For instance, a front
end application of an account management system may be
devoted to interfacing with customers to allow a customer to
change the account information, to change subscription, etc.
However, a different front end application may provide the
interface for billing specialists.

The interaction data from the front end application may
need to be sent to the corresponding back end of the applica-
tion where all the core functions are performed and data are
stored in databases. For instance, a customer may request, via
a front end interface of an account management system to
change the cellular phone service subscription from a 200
free minute plan to a 400 free minute plan. Upon receiving the
information regarding the change, the front end has to com-
municate with the back end to effectuate the change. To
achieve that, the information received from the Internet from
the customer needs to be delivered to the back end in a form
that is recognizable by the back end. This is often achieved via
so called middleware.

FIG. 1(a) (Prior Art) shows a conventional system configu-
ration 100 between front end applications 110-1, 110-2, . . .,
110-K and a back end system 150 via a middleware called
enterprise service bus (ESB) provider 130. As shown, the
front end applications communicate with the ESB Provider
130 via a network connection 120. Upon receiving the infor-
mation from a front end application, the ESB Provider 130
forwards the information to the back end system 150. In some

10

15

20

25

30

35

40

45

50

55

60

65

2

situations, when the front end and back end system support
different communication protocols, the ESB Provider 130
may also translate information from either side by transform-
ing from the source format to a destination format to facilitate
communication. In some systems, specific buffers may be
deployed to store messages from either side. For example, as
shown in FIG. 1(a), message queues 140 may be used to
buffer messages from front end applications and back end
systems. A request made by a front end application may be
converted into a message of an appropriate format and stored
in the message queues 140. Such queued messages may then
be retrieved by the back end system 150 and processed
accordingly. When the processing is completed, the back end
system 150 may also send a response to the message queues
140. Such buffered responses may then be retrieved by the
ESB Provider 130. Such retrieved responses may then be
transformed into a format appropriate to the front end appli-
cation and transmitted to the front end application.

There are other functionalities performed by the middle-
ware ESB Provider 130. For instance, for each transaction
that a front end application requests the back end system 150
to perform, certain transaction information (e.g., account
identification, nature of the transaction, status of the transac-
tion, date and time of the transaction, etc.) may be recorded in
some database(s) within the ESB Provider 130 to facilitate
future needs. For instance, a bank account management sys-
tem may allow a customer to deposit or transfer money
around. Information related to all such transactions may be
stored in the ESB Provider 130. Another application may be
designed to generate monthly statements. To do so, the
monthly statement application may retrieve all the informa-
tion stored in the ESB Provider 130 related to all the deposits
and money transfers made by each customer. In this case, the
monthly statement application may retrieve transactional
information from the ESB Provider.

To access information stored in a database, a database
connection is usually made to the database driver. To open
such a connection is usually time consuming. In addition,
when a data access operation is completed, the database con-
nection is usually closed, which also takes time. When such
access is frequent, the time required to open and close data-
base connections negatively affects the bandwidth needed to
access the databases. To solve this problem, connection pool-
ing has been used. Under connection pooling, a pool of data-
base connections is created in which a set of database con-
nections are open and can be provided upon request. Once a
connection is used, it can be returned to the pool so that it can
be used for the next request. That is, the database connections
in the pool are open all the time so that the time required to
open and close database connections is saved.

FIG. 1(b) (Prior Art) shows a conventional connection
pooling scheme under which the number of connections
opened in the connection pool is determined by each thread
group during execution. As shown, at the front end applica-
tion layer 160, there are, e.g., three thread groups, 170-1,
170-2, and 170-3, and each thread group includes a number of
application threads (3, 5, and 4, respectively). In this conven-
tional solution, each thread group determines its own number
of connections pooled. For instance, the first thread group
170-1 opens 3 connections for pooling purposes. The second
thread group 170-2 opens 5 connections for pooling purposes.
The third thread group 170-03 opens 4 connections for pool-
ing. Overall, there are a total of 12 connections open and
connected to the database driver 180 and the database 190.

With this conventional solution, the total number of con-
nections opened for pooling equals the number of application
threads and, hence, there is no actual pooling. Because the

US 9,098,565 B1

3

number of connections opened is large, it is therefore still
costly. This connection pooling solution does not provide
much advantage. A more cost effective connection pooling
scheme, for example, in the context of ESB Provider, is there-
fore needed.

BRIEF DESCRIPTION OF THE DRAWINGS

The inventions claimed and/or described herein are further
described in terms of exemplary embodiments. These exem-
plary embodiments are described in detail with reference to
the drawings. These embodiments are non-limiting exem-
plary embodiments, in which like reference numerals repre-
sent similar structures throughout the several views of the
drawings, and wherein:

FIG. 1(a) (Prior Art) shows a conventional system configu-
ration between front end applications and a back end system
via an enterprise service bus (ESB) provider;

FIG. 1(b) (Prior Art) shows a conventional operational
schematics in which each thread group determines individu-
ally a number of connections to a database during execution;

FIG. 2 depicts a system configuration between front end
applications and a back end system via an ESB provider with
global connection pooling capability, according to an
embodiment of the present teaching;

FIG. 3 depicts a system diagram of an exemplary ESB
provider with global connection pooling capability, accord-
ing to an embodiment of the present teaching;

FIGS. 4-5 are flowcharts of an exemplary process in which
an ESB provider with connection pooling capability provides
an interface between a front end application and back end
system, according to an embodiment of the present teaching;

FIG. 6 depicts a system diagram of an exemplary connec-
tion pooling mechanism, according to an embodiment of the
present teaching;

FIG. 7 is a flowchart of an exemplary process in which a
database access request is handled via a connection pooling
mechanism, according to an embodiment of the present
teaching;

FIG. 8 is a flowchart of an exemplary process in which a
connection pooling mechanism initializes a connection pool,
according to an embodiment of the present teaching;

FIG. 9 illustrates exemplary types of database accesses;
and

FIG. 10 depicts the mechanism in which a global connec-
tion pooling mechanism is used to improve the efficiency of
database access, according to an embodiment of the present
teaching.

DETAILED DESCRIPTION

In the following detailed description, numerous specific
details are set forth by way of examples in order to provide a
thorough understanding of the relevant teachings. However, it
should be apparent to those skilled in the art that the present
teachings may be practiced without such details. In other
instances, well known methods, procedures, components,
and/or circuitry have been described at a relatively high-level,
without detail, in order to avoid unnecessarily obscuring
aspects of the present teachings.

The present teaching relates to apparatus and method for
middleware, such as an ESB provider, with a global connec-
tion pooling mechanism to facilitate access to databases. The
connection pooling mechanism disclosed herein is global in
the sense that the number of connections that are open is not
determined by each thread group, as is conventionally the
case in the context of an ESB provider. In addition, a mini-

10

15

20

25

30

35

40

45

50

55

60

65

4

mum number of idle connections are kept open without being
closed so that database accesses can be made much faster and
efficient. Details of the present teaching are discussed below
with respect to FIGS. 2-10.

FIG. 2 depicts an exemplary system configuration 200
between one or more middleware front end applications 110
and a back end system 150 via an ESB provider 210 that has
global connection pooling (CP) capability, according to an
embodiment of the present teaching. The exemplary system
200 comprises one or more front end applications 110-1,
110-2, . . ., 110-K, an ESB provider 210, and a back end
system 150. A front end application (e.g., 110-1) communi-
cates with the back end system 150 via the ESB provider 210
through a network connection 120. Optionally, the ESB pro-
vider 210 may facilitate such communication via message
queues 140 by posting messages from a front end application
in the message queues 140 and receiving responses posted by
the back end system 150 from the message queues 140.

The network 120 connects the front end applications to the
ESB provider 210. The network 120 can be any form of
network connections such as a local area network (LAN),
wide area network (WAN), the Internet, a virtual network, a
wired network, a wireless network, a public switched tele-
phone network (PSTN), a proprietary network, a public net-
work, or any combination thereof. The communication
between a front end application and the ESB provider 210 can
be conducted via any communication protocol appropriate
for the application and supported by the ESB provider 210.

A front end application can be any application that supports
interactions between an end user and a particular online func-
tion. For example, a front end application can be an auto-
mated customer support system (ACSS), an interactive voice
retrieval (IVR) system, an online platform for customer man-
agement, a business to business online account management
system, or a billing system. For example, an end user may
interface with an IVR system (a front end application) to
retrieve voice data recorded at a network node. In addition, a
billing system (another front end application) may be acti-
vated to do a monthly billing of the end user so that all
transactions requested within a month period will be used to
calculate the monthly payment under the subscribed plan of
the end user.

When an end user interacts with a front end application,
data provided by the end user, either a request or information
related to the user or an underlying transaction, needs to be
delivered to the back end system 150 in order for a back end
system (not shown) to process the information or carry out a
transaction requested. For example, the type of request (e.g.,
retrieve voice message), the user login information, etc.
When the requested transaction is completed, the back end
system may produce some response, including the status of
the transaction (e.g., successful in retrieving 3 messages) or
the confirmed information used in the transaction (e.g., end
user’s identification information), and return such a response
to the end user through the ESB provider 210 and the frontend
application interfaces.

Some of the transactional information returned to the end
user may be recorded in a database located within the ESB
provider 210 as, e.g., transaction log data. Such recorded log
data may later be retrieved by a different front end applica-
tion, e.g., a billing system, for the purposes of generating a
monthly bill to users. In recording such information associ-
ated with each transaction under any front end application,
the ESB provider 210 utilizes the global connection pooling
capability disclosed herein to facilitate faster and efficient
database operations. With respect to connection pooling, the
database connections that are opened for accessing databases

US 9,098,565 B1

5

are pooled together and shared among different applications
that are in need of database accesses. Details related to how
the connection pooling is achieved in a global manner is
discussed with reference to FIGS. 6-8.

FIG. 3 depicts an exemplary system diagram of the ESB
provider 210 having global connection pooling capability,
according to an embodiment of the present teaching. In the
illustrated embodiment, the ESB provider 210 comprises an
incoming request process flow (including a request receiver
310, a request validation mechanism 320, a request processor
325, and arequest transformer 330), a transceiver 335, and an
outgoing response process flow (including a response
receiver 340, a response validation mechanism 345, a
response processor 350, a response transformer 355, and a
response transmitter 360), a data access interface 365, an
information access controller 370, a connection pooling
mechanism 375, and a database system 380 (a database server
and a plurality of database storages). Any of the components
in the ESB Provider 210 may be implemented as a hardware
component, a software component, a middleware component,
or a combination thereof.

The processing steps of the incoming request process flow
and the outgoing response flow are discussed in FIGS. 4-5,
according to an embodiment of the present teaching. The
request receiver 310 first receives, at 410, a request from a
front end application (e.g., 110-1) via the network 120. The
received request is forwarded to the request validation mecha-
nism 320 to validate, at 420, the request. For example, a
request may not be valid if it is not coded correctly. In addi-
tion, if a request is not supported, the request may also be
considered as invalid. If the request is not valid, determined at
430, the incoming request process flow returns to 410 to
receive the next request.

It the request is valid, the request processor 325 processes,
at 440, the request. The processing performed on the request
may be based on different considerations. For example, syn-
tactic analysis may be performed on the request so that
semantically meaningful words or information may be
extracted from the request. The processed request is then
transformed, at 450, to generate a formatted request, which is
then sent to the message queues 140 at 460. The re-formatting
of the request may be performed so that the request is to be
sent to the back end system 150 in a format that is supported
and recognizable. For instance, information extracted from a
request received may be re-formatted in, e.g., XML, before it
is sent, by the transceiver 335, to a message queue 140. The
request queued in the message queues 140 is then taken by the
back end system 150.

Upon receiving a request from the message queues 140, the
back end system 150 provisions the request and executes the
request. When the execution is completed, the back end sys-
tem generates a response to the request and places the
response in the message queues 140.

FIG. 5 is an exemplary flowchart of the outgoing response
process flow, according to an embodiment of the present
teaching. After the response from the back end system is
queued, the transceiver 335, receives the response at 510. The
response validation mechanism 345 then validates, at 520, the
received response. If the response is not valid, determined at
530, the flow returns to 510 to receive next response. If the
response is valid, the response processor 350 processes, at
540, the response. Similar to the processing of a request, a
response is processed so that useful information may be indi-
vidually identified and extracted from the response, e.g., for-
matted in an XML format.

To send the response to a front end application, the
response may need to be re-formatted in a style that is sup-

10

20

25

30

35

40

45

50

55

60

65

6

ported by the front end application. Therefore, the processed
response is transformed, at 550, before it is sent, at 560, to the
front end application that made a corresponding request for
which the response is generated. When various useful infor-
mation is extracted from the response, some of the informa-
tion may also be stored in a database for future purposes (e.g.,
billing). To do so, some of the information contained in the
response is obtained, at 570, by the information access con-
troller 370 that is responsible for read, write, and update
information stored in the database system 380.

To store information from a response in the database sys-
tem 380, the information access controller 370 establishes a
connection to the database system 380 via the connection
pooling mechanism 375. Through such a connection, infor-
mation is stored, at 580, in the database system 380. Such
stored information may be retrieved in the future for various
purposes such as auditing or billing. In this case, a data access
request is received by the data access interface 365 and for-
warded to the information access controller 370. Via the con-
nection pooling mechanism 375, the information access con-
troller 370 can control to retrieve the requested information
from the database system 380 and return the retrieved data to
the application that made the request. Similarly, a piece of
stored information may be modified through the same func-
tional blocks as described herein.

FIG. 6 depicts an exemplary system diagram of the con-
nection pooling mechanism 375, according to an embodi-
ment of the present teaching. The connection pooling mecha-
nism 375 comprises a request receiver 610, a request analyzer
620, a global connection pooling controller 630, a connection
pool 640, a connection pool update mechanism 645, a data-
base connection establishment mechanism 635, a data access
mechanism 665, a database operation mechanism 670, and a
response transmitter 655. Processing flows among those sys-
tem components for different tasks are discussed with refer-
ence to FIGS. 7 and 8.

FIG. 7 is a flowchart of an exemplary process in which a
database access request is handled via connection pooling,
according to an embodiment of the present teaching. A
request to access the database system 380 is first received, at
710, by the request receiver 610, and analyzed or parsed, at
720, by the request analyzer 620. To access the database, it is
determined, at 730 by the global connection pooling control-
ler 630, whether the database connection pool has been cre-
ated. If no connection pool has been created, the global con-
nection pooling controller 630 invokes the connection pool
update mechanism 645 to create, at 740, an initial database
connection pool 640.

When a connection pool exists (just created at 740 or
created before current request, the global database connec-
tion controller 630 invokes the database connection establish-
ment mechanism 635, at 750, to obtain a database connection
for each received database access request. The database con-
nection establishment mechanism 635 then requests a data-
base connection handle from the connection pool 640. Upon
receiving, at 760, the requested database connection handle,
the database connection establishment mechanism 635
returns the handle to the global connection pooling controller
630. Depending on the nature of the data access request
received, the global connection pooling mechanism 630
invokes the data access mechanism 665, with the database
connection handle, to perform the requested data access at
770. If the access for a read operation, information read from
the database is returned to the global connection pooling
mechanism 630 and subsequently forwarded to the response
transmitter 655 so that the data accessed can be returned to the
requesting component (e.g., the information access controller

US 9,098,565 B1

7

370 in FIG. 3). Once the database access is made, the global
connection pooling controller 630 returns the database con-
nection handle, at 780, back to the connection pool 640.

FIG. 8 is a flowchart of an exemplary process in which the
connection pool update mechanism 645 creates an initial
connection pool 640, according to an embodiment of the
present teaching. In this exemplary embodiment, the connec-
tion pool is implemented based on an object oriented
approach. An instance of a connection pool object is first
created at 810. To implement details in the connection pool,
various connection pooling parameters are retrieved at 820.
Examples of such parameters may include, e.g., Minldle for a
minimum number of idle connections, MaxIdle for a maxi-
mum number of idle connections, or MaxActive for a maxi-
mum number of active connections opened. The initial con-
nection pool is created based on such connection pooling
parameters.

Such parameters may be determined independent of appli-
cation threads so that even when there is no thread running,
there are a minimum number of idle connections open so that
whenever there is a request, the connection to the database
can be readily made accessible without having to re-open the
database connection which is expensive and slow. In addition,
since all application threads share the database connections
and whenever a connection is used, it is returned back to the
connection pool so that other applications or threads can
effectively utilize the same connection to access the database.
This makes the connection pooling mechanism described
herein cost effective so that the ESB provider is able to offer
efficient data access services.

After the minimum number of connections are open in the
connection pool 640, the global connection pool controller
630 receives, at 840, a connection factory connection, regis-
ters, at 850, a connection pool wrapper, and instantiates, at
860, a connection pool data source object in the context of the
object oriented implementation. It is understood that what is
disclosed herein is merely an example of implementation
rather than limitation. Any other means to implement the
connection pooling and the functionalities described herein
does not deviate from the spirit of and therefore falls within
the scope of the present teaching.

Viathe connection pooling mechanism 375, different types
of database access can be achieved via connection pooling.
FIG. 9 illustrates exemplary types of database accesses. A
database access request 910 may be a data access request 920
or a database operational request 930. A data access request
can be a data read operation 940, a data write operation 950,
or data modification operation 960. A database operation may
refer to an operation to be performed on the database itself
without regard to the data stored therein. It may be considered
as database maintenance related operations. Examples of a
database operation may include database initialization opera-
tion 970, database upgrade operation 980, or garbage collec-
tion operation 990 when the memory space of the database
system 380 becomes, e.g., too fragmented.

The exemplary system diagram for the connection pooling
mechanism 375, as illustrated in FIG. 6, also includes some
optional components such as an authentication mechanism
615, a connection pooling parameter configuration mecha-
nism 625, and a set of connection pooling parameters 650
generated by the connection pooling parameter configuration
mechanism 625. In some situations, a request to access a
database may need to be authenticated before the request is
being processed. In this case, the authentication mechanism
615 may authenticate the request first and then forward the
authenticated request to the request analyzer 620 to further
parsing analysis.

30

40

45

55

8

In addition, the connection pool 640 may be created or
updated based on configuration parameters that can be
dynamically changed. For example, the initial connection
pool may be created with an initial minimum number of idle
connections. This initial number of connections may be
increased over time when the traffic increases. Such increase
may be limited by an upper bound limit of a maximum num-
ber of connections in the connection pool. Such an upper
bound limit may also be dynamically updated based on the
traffic needs.

To dynamically update the connection pooling parameters,
a system operator (not shown) may interface with the con-
nection pooling parameter configuration mechanism 625 to
configure or re-configure the parameters to be used to create
or update the connection pool 640. The configured or re-
configured parameters may be saved as the connection pool-
ing parameters 650, which can be retrieved by the connection
pooling update mechanism 645 to create or dynamically
maintain the connection pool 640. In some embodiments,
whenever there is a change in the saved connection pooling
parameters, the connection pooling parameter configuration
mechanism 625 may automatically trigger the connection
pooling update mechanism 650 to retrieve the new param-
eters in order to properly maintain the connection pool 640.

In some embodiments, the connection pooling parameters
may also be automatically updated based on, e.g., the actual
traffic situation, observed by, e.g., the connection pooling
parameter configuration mechanism 625. For instance, if for
aperiod of time, the traffic is such that often there is a demand
for more than the supply of connections opened in the con-
nection pool, then the upper bound limit (e.g., MaxActive) as
to the maximum number of connections in the pool may be
increased so that more connections can be opened in the
connection pool to meet the demand. If it is observed that the
traffic is low so that there are often more idle connections than
active connections, the upper bound limit of the number of
connections open in the connection pool may be reduced so
that some of the connections may be closed.

In some embodiments, even though the total number of
connections open in the connection pool may be flexible, a
minimum number of idle connections open in the connection
pool may be maintained. For example, a minimum of 5 con-
nections may be the lower bound limit. That is, even if there
is no traffic, there are 5 database connections open so that as
soon as the traffic starts, they can be readily used. In this way,
there is no start-up time to open database connections needed,
which can be time consuming. In some embodiments, even
this lower bound limit may be designed to be alterable under
some conditions. A timeout measure may be put in place so
that if after a period of time specified by the timeout condi-
tion, there is no traffic observed at all, the minimum number
if idle connections may be reduced to save the maintenance
cost. This may be useful when, e.g., the network connection is
not available so that there is no reason to keep as many idle
connections open.

In operation, the connection pool 640 may therefore be
maintained in accordance with the dynamically updated
parameters, determined based on, e.g., real-time traffic con-
ditions. Since the connection pooling mechanism 375 oper-
ates independent of application thread groups, such real-time
traffic conditions are estimated based on the overall traffic
from all applications as well as their overall threads. In addi-
tion, due to a minimum number of idle connections remaining
open in the connection pool, they can be used by any appli-
cation and thread and the efficiency in database access is
improved.

US 9,098,565 B1

9

FIG. 10 depicts how the global connection pooling mecha-
nism 375, as discussed herein, is used to improve the effi-
ciency of database access, according to an embodiment of the
present teaching. In operation, at the application level 1010,
there may be multiple thread groups running simultaneously,
e.g., thread group 11020-1, thread group 2 1020-2, and thread
group 3 1020-3. In each thread group, there can be multiple
application threads, e.g., thread group 1 includes three appli-
cation threads, thread group 2 includes 5 application threads,
and thread group 3 includes 4 application threads. Each of the
application threads in each thread group may make a request
for a database connection to the global connection pool 1030
and receive a data connection handle from the global connec-
tion pool 1030.

The global connection pool 1030 resides within an ESB
provider that interfaces the application layer 1010 with a
database driver 1040 and a database 1050. The global con-
nection pool 1030 has anumber of database connections open
so that whenever there is an application request to make a
connection to the database 1050, a handle for an already open
database connection is provided from the connection pool to
the requesting application thread so that the time necessary to
open a database connection is saved to make a database
access. Once the requesting application thread completes the
database access, the handle is returned back to the global
connection pool 1030.

As seen in FIG. 1(5), with the conventional solution, when
the total number of application threads running at the same
time is 12 (3+5+4=12), there are a total of 12 database con-
nections being opened in order to achieve connection pool-
ing. This is due to the fact that the connection pooling in the
conventional solution is based on thread level (rather than at
a global level across individual threads and applications).
With the connection pooling scheme described herein, the
number of connections open to achieve connection pooling is
determined independent of the actual number of threads and
it is determined based on the actual traffic conditions. In FIG.
10, the total number of connections open in the connection
pool 1030 is K, which is usually much smaller than the
number of application threads (12). For instance, K can be a
number as small as 3. In this manner, the connection pooling
scheme described herein is more cost effective without sac-
rificing a fast turnaround access time for accessing databases
in middleware. In addition, with the solutions described
herein, the improved connection pooling mechanism requires
minimum changes to the existing middleware architecture
with yet improved performance.

Computer hardware platforms may be used as the hard-
ware platform(s) for one or more of the network elements
(e.g., request receiver 310, request processor 325, response
transformer 355, or connection pooling mechanism 375) of
the ESB Provider 210. A network or host computer platform
may typically be used to implement a server. A computer with
user interface elements may be used to implement a personal
computer (PC) or other type of work station or terminal
device, although a computer may also act as a server if appro-
priately programmed. It is believed that those skilled in the art
are familiar with the structure, programming and general
operation of such computer equipment.

The hardware elements, operating systems and program-
ming languages of such computers are conventional in nature,
and it is presumed that those skilled in the art are adequately
familiar therewith. Of course, the server functions may be
implemented in a distributed fashion on a number of similar
platforms, to distribute the processing load. Hence, aspects of
the methods of receiving service requests through a common
communication port in a server or network device from a

20

40

45

55

10

variety of client applications, as outlined above, may be
embodied in programming. Program aspects of the technol-
ogy may be thought of as “products” or “articles of manufac-
ture” typically in the form of executable code and/or associ-
ated data that is carried on or embodied in a type of machine
readable medium. “Storage” type media include any or all of
the memory of the computers, processors or the like, or asso-
ciated modules thereof, such as various semiconductor
memories, tape drives, disk drives and the like, which may
provide storage at any time for the software programming.

All or portions of the software may at times be communi-
cated through the Internet or various other telecommunica-
tion networks. Such communications, for example, may
enable loading of the software from one computer or proces-
sor into another, for example, from a management server or
host computer of the network operator or carrier into the
platform of the ESB Provider 210 or other device implement-
ing ESB or similar functionality. Thus, another type of media
that may bear the software elements includes optical, electri-
cal and electromagnetic waves, such as used across physical
interfaces between local devices, through wired and optical
landline networks and over various air-links. The physical
elements that carry such waves, such as wired or wireless
links, optical links or the like, also may be considered as
media bearing the software. As used herein, unless restricted
to tangible “storage” media, terms such as computer or
machine “readable medium” refer to any medium that par-
ticipates in providing instructions to a processor for execu-
tion.

Hence, a machine readable medium may take many forms,
including but not limited to, a tangible storage medium, a
carrier wave medium or physical transmission medium. Non-
volatile storage media include, for example, optical or mag-
netic disks, such as any of the storage devices in any com-
puter(s) or the like, such as may be used to implement the data
aggregator, the customer communication system, etc. shown
in the drawings. Volatile storage media include dynamic
memory, such as main memory of such a computer platform.
Tangible transmission media include coaxial cables; copper
wire and fiber optics, including the wires that comprise a bus
within a computer system. Carrier-wave transmission media
can take the form of electric or electromagnetic signals, or
acoustic or light waves such as those generated during radio
frequency (RF) and infrared (IR) data communications. Com-
mon forms of computer-readable media therefore include for
example: a floppy disk, a flexible disk, hard disk, magnetic
tape, any other magnetic medium, a CD-ROM, DVD or
DVD-ROM, any other optical medium, punch cards paper
tape, any other physical storage medium with patterns of
holes, a RAM, a PROM and EPROM, a FLASH-EPROM,
any other memory chip or cartridge, a carrier wave transport-
ing data or instructions, cables or links transporting such a
carrier wave, or any other medium from which a computer
canread programming code and/or data. Many of these forms
of computer readable media may be involved in carrying one
or more sequences of one or more instructions to a processor
for execution.

Those skilled in the art will recognize that the present
teachings are amenable to a variety of modifications and/or
enhancements. For example, although the ESB Provider 210
implementation described above is embodied in a hardware
device, it can also be implemented as a software only solu-
tion—e.g., requiring installation on an existing server within
FIG. 3.

While the inventions have been described with reference to
the certain illustrated embodiments, the words that have been
used herein are words of description, rather than words of

US 9,098,565 B1

11

limitation. Changes may be made, within the purview of the
appended claims, without departing from the scope and spirit
of the invention in its aspects. Although the inventions have
been described herein with reference to particular structures,
acts, and materials, the invention is not to be limited to the
particulars disclosed, but rather can be embodied in a wide
variety of forms, some of which may be quite different from
those of the disclosed embodiments, and extends to all
equivalent structures, acts, and, materials, such as are within
the scope of the appended claims.
We claim:
1. A method, comprising:
receiving a request from an application at a first request
receiver, wherein the requesting application is one of a
plurality of applications accessing a system;
processing the request received at the first request receiver
by a request processor;
transforming the request, as processed by the request pro-
cessor, from a front end format supported by the request-
ing application into a back end format supported by the
back end mechanism by a request transformer;
forwarding, by a transceiver, the transformed request to a
back end mechanism;
receiving, by the transceiver, a response to the transformed
request from the back end mechanism;
obtaining information from the response via processing by
a response processor;
transforming, by a response transformer, the response, as
processed by the response processor, from the back end
format supported by the back end mechanism into the
front end format supported by the requesting application
of the plurality of applications accessing the system;
transmitting, by a first response transmitter, the trans-
formed response to the requesting application of the
plurality of applications accessing the system;
maintaining, by a connection pool mechanism, a single
global pool of database connections with at least a mini-
mum non-zero number of idle connections open, where
the minimum non-zero number of idle connections is
determined based on the overall traffic from all applica-
tions of the plurality of applications and independent of
one or more threads of the application, and where each
database connection in the single global pool of database
connections is available for any use by all applications of
the plurality of applications accessing the system;
storing the obtained information in a database via a first
database connection allocated from the pool of a plural-
ity of database connections created to facilitate access to
the database; and
returning the first database connection to the single global
pool of database connections for reuse.
2. The method of claim 1, wherein:
the transformed request is forwarded to the back end
mechanism via a message queue,
the response is placed in the message queue by the back end
mechanism as a response to the transformed request, and
the information stored in the database relates to a transac-
tion performed with respect to the transformed request.
3. The method of claim 1, wherein the pool of database
connections is dynamically maintained based on observed
traffic needs in accordance with a plurality of criteria.
4. The method of claim 3, wherein the plurality of criteria
includes:
a minimum number of idle connections;
a maximum number of idle connections;
a maximum number of active connections; and
an idle connection timeout parameter.

15

20

25

30

35

40

45

65

12

5. The method of claim 1, wherein the step of storing the

information comprises:

receiving a request by an information controller to store the
information from the response;

obtaining the first database connection from the pool of
database connections;

executing the request to store the information from the
response based on the first database connection; and
returning the first database connection to the pool of
database connections.

6. The method of claim 5, wherein the step of obtaining the

first database connection comprises:

determining, whether the pool of database connections has
been created;

if the pool has not been created, retrieving a plurality of
connection pooling parameters and creating an instance
of the pool of database connections with a minimum
number of database connections based on the connec-
tion pooling parameters; and

allocating one of the plurality of database connections as
the first database connection for executing the request to
store the information.

7. The method of claim 1, further comprising:

receiving an information retrieval request requesting to
access information stored in the database;

allocating a second database connection from the pool of
database connections;

retrieving information from the database based on the sec-
ond database connection; and

returning the second database connection to the pool of
database connections.

8. The method of claim 1, further comprising:

maintaining a single global pool of database connections
with at least a minimum non-zero number of idle data-
base connections open, where determining the mini-
mum non-zero number of idle database connections
based on the overall traffic from all applications of the
plurality of applications and independent of one or more
application threads that are in communication with a
middleware, and where each database connection in the
single global pool of database connections is available
for any use by all applications of a plurality of applica-
tions accessing the system;

receiving a request from another application for accessing
data stored in a middleware database, wherein the
requesting another application is one of a plurality of
applications accessing the system;

obtaining a database connection from the single global
pool of database connections;

executing the request to access data stored in the database
via the database connection; and

returning the database connection to the single global pool
of database connections for reuse.

9. A system, comprising:

a first request receiver configured for receiving a request
from an application, wherein the requesting application
is one of a plurality of applications accessing a system;

a request processor configured to process the request
received at the first request receiver;

a request transformer configured to transform the request,
as processed by the request processor, from a front end
format supported by the requesting application into a
back end format supported by the back end mechanism;

a transceiver configured for forwarding the transformed
request to a back end mechanism and for receiving a
response to the transformed request from the back end
mechanism;

US 9,098,565 B1

13

a response processor configured for processing the
received response to obtain information from the
response;

a response transformer configured to transform the
response, as processed by the response processor, from
the back end format supported by the back end mecha-
nism into the front end format supported by the request-
ing application of the plurality of applications accessing
the system;

a first response transmitter to transmit the transformed
response to the requesting application of the plurality of
applications accessing the system; and

a connection pooling mechanism configured for maintain-
ing a single global pool of database connections with at
least a minimum non-zero number of idle connections
open, where the minimum non-zero number of idle con-
nections is determined based on the overall traffic from
all applications of the plurality of applications and inde-
pendent of one or more application threads, and for
storing the information in a database via a database
connection allocated from the pool of a plurality of
database connections created to facilitate access to the
database, where each database connection in the pool of
the plurality of database connections is available for any
use by all applications of the plurality of applications
accessing the system.

10. The system of claim 9, wherein the information stored
in the database relates to a transaction performed with respect
to the request.

11. The system of claim 9, wherein the pool of database
connections is dynamically maintained based on observed
traffic needs in accordance with a plurality of criteria, the
plurality of criteria including:

a minimum number of idle connections;

a maximum number of idle connections;

a maximum number of active connections; and

an idle connection timeout parameter.

12. The system of claim 9, wherein the connection pooling
mechanism comprises:

asecond request receiver configured for receiving a request
to access the database;

a connection pool configured for hosting the plurality of
database connections that can be used to access the
database;

an update mechanism configured for initializing and updat-
ing the connection pool in accordance with a plurality of
connection pooling parameters;

a connection pooling operator configured for executing the
request to access the database based on the database
connection and returning the database connection to the
connection pool after the execution; and

a response transmitter configured for transmitting a
response to the request based on a status of database
access performed based on the request.

13. The system of claim 12, wherein the connection pool-

ing operator further comprises:

a database connection establishment mechanism config-
ured for obtaining a database connection from the pool
of database connections; and

a data access mechanism configured for interfacing with
the database for data access using the database connec-
tion.

14. An article of manufacture, comprising:

a machine readable storage medium having information
stored thereon, the information, when read by the
machine, causing the machine to perform the following
for an enterprise service bus provider:

10

15

20

25

30

35

40

45

14

receiving a request from an application at a first request
receiver, wherein the requesting application is one of a
plurality of applications accessing a system;

processing the request received at the first request receiver
by a request processor;

transforming the request, as processed by the request pro-
cessor, from a front end format supported by the request-
ing application into a back end format supported by the
back end mechanism by a request transformer;

forwarding, by a transceiver, the transformed request to a
back end mechanism;

receiving, by the transceiver, a response to the transformed
request from the back end mechanism;

obtaining information from the response via processing by
a response processor;

transforming, by a response transformer, the response, as
processed by the response processor, from the back end
format supported by the back end mechanism into the
front end format supported by the requesting application
of the plurality of applications accessing the system;

transmitting, by a first response transmitter, the trans-
formed response to the requesting application of the
plurality of applications accessing the system;

maintaining, by a connection pool mechanism, a single
global pool of database connections with at least a mini-
mum non-zero number of idle database connections
open, where the minimum non-zero number of idle data-
base connections is determined based on the overall
traffic from all a applications of the plurality of applica-
tions and independent of one or more threads of the
application, and where each database connection in the
single global pool of database connections is available
for any use by all different threads of the application or
other applications of the plurality of applications access-
ing the system; and

storing the obtained information in a database via a first
database connection allocated from the pool of database
connections created to facilitate access to the database;
and returning the first database connection to the single
global pool of database connections.

15. The article of manufacture of claim 14, wherein:

the transformed request is forwarded to the back end
mechanism via a message queue,

the response is placed in the message queue by the back end
mechanism as a response to the transformed request, and

the information stored in the database relates to a transac-
tion performed with respect to the transformed request.

16. The article of manufacture of claim 14, wherein the

pool of database connections is dynamically maintained

50 based on observed traffic needs in accordance with a plurality

55

60

65

of criteria.

17. The article of manufacture of claim 16, wherein the

plurality of criteria includes:

a minimum number of idle connections;

a maximum number of idle connections;

a maximum number of active connections; and

an idle connection timeout parameter.

18. The article of manufacture of claim 14, wherein the step

of storing the information comprises:

receiving a request by an information controller to store the
information obtained from the response;

obtaining the first database connection from the pool of
database connections;

executing the request to store the information obtained
from the response based on the first database connec-
tion; and returning the first database connection to the
pool of database connections.

US 9,098,565 B1

15

19. The article of manufacture of claim 18, wherein the step
of obtaining the first database connection comprises:

determining, whether the pool of database connections has

been created;

if the pool has not been created, retrieving a plurality of

connection pooling parameters and creating an instance
of the pool of database connections with a minimum
number of database connections based on the connec-
tion pooling parameters; and

allocating one of the plurality of database connections as

the first database connection for executing the request to
store the information obtained from the response.

20. The article of manufacture of claim 14, further com-
prising:

receiving an information retrieval request requesting to

access information stored in the database;

allocating a second database connection allocated from the

pool of database connections;

retrieving information from the database based on the sec-

ond database connection; and

returning the second database connection to the pool of

database connections.

21. The article of manufacture of claim 14, further com-
prising:

maintaining a single global pool of database connections

with at least a minimum non-zero number of idle data-
base connections open, where determining the mini-
mum non-zero number of idle connections based on the
overall traffic from all applications of the plurality of
applications and independent of one or more application
threads, and where each database connection in the
single global pool of database connections is available
for any use by all different threads of the application or
other applications of a plurality of applications access-
ing the system;

receiving a request from another application for accessing

data stored in a database, wherein the requesting another
application is one of a plurality of applications accessing
the system;

obtaining a database connection from the single global

pool of data connections;

executing the request to access data stored in the database

via the database connection; and

returning the database connection to the pool of database

connections for reuse.

22. The article of manufacture of claim 21, wherein the
data access includes at least one of data read, data write, and
data modification.

23. The system of claim 9, wherein the connection pooling
mechanism further comprises:

an authentication mechanism configured to authenticate

the received request before the request is processed by
the request processor; and

a request analyzer configured to perform parsing analysis

of the authenticated request.

24. The method of claim 1, wherein maintaining a single
global pool of database connections with at least a minimum
non-zero number of idle connections open, comprises:

setting a timer for a period of time specified by a timeout

condition;

observing traffic conditions for the period of time; and

in response to an observation of no traffic, reducing the

minimum number of non-zero idle connections.

25. The method of claim 8, wherein maintaining a single
global pool of database connections with at least a minimum
non-zero number of idle connections open, further com-
prises:

20

30

35

40

45

50

55

65

16

setting a timer for a period of time specified by a timeout

condition;

observing traffic conditions for the period of time; and

in response to an observation of no traffic, reducing the

minimum number of non-zero idle connections.

26. The system of claim 9, wherein the connection pooling
mechanism is further configured, when maintaining a single
global pool of database connections with at least a minimum
non-zero number of idle connections open, to:

set a timer for a period of time specified by a timeout

condition;

observe traffic conditions for the period of time; and

in response to an observation of no traffic, reduce the

minimum number of non-zero idle connections.

27. The method of claim 1, wherein maintaining a single
global pool of database connections with at least a minimum
non-zero number of idle connections open, comprises:

in response to a saved change of new connection pooling

parameters, retrieving the saved new connection pooling
parameters; and

dynamically maintaining the single global pool of database

connections according to the retrieved saved new con-
nection pooling parameters.

28. The method of claim 8, wherein maintaining a single
global pool of database connections with at least a minimum
non-zero number of idle connections open, further com-
prises:

in response to a saved change of new connection pooling

parameters, retrieving the saved new connection pooling
parameters; and

dynamically maintaining the single global pool of database

connections according to the retrieved saved new con-
nection pooling parameters.

29. The system of claim 9, wherein the connection pooling
mechanism is further configured, when maintaining a single
global pool of database connections with at least a minimum
non-zero number of idle connections open, to:

in response to a saved change of new connection pooling

parameters, retrieve the saved new connection pooling
parameters; and

dynamically maintain the single global pool of database

connections according to the retrieved saved new con-
nection pooling parameters.

30. The method of claim 1, wherein maintaining a single
global pool of database connections with at least a minimum
non-zero number of idle connections open, comprises:

in response to a demand for more than a current supply of

connection open in the connection pool, increasing the
maximum number of active connections to the maxi-
mum number of connections in the single global pool to
meet the demand, wherein the demand is determined
based on traffic conditions observed for a period of time;
and

after a subsequent period of time and in response to a

decrease in demand for the maximum number of active
connections, reducing the number of open connections
in the single global connection pool.

31. The method of claim 8, wherein maintaining a single
global pool of database connections with at least a minimum
non-zero number of idle connections open, further com-
prises:

in response to a demand for more than a current supply of

connection open in the connection pool, increasing the
maximum number of active connections to the maxi-
mum number of connections in the single global pool to

US 9,098,565 B1

17

meet the demand, wherein the demand is determined
based on traffic conditions observed for a period of time;
and

after a subsequent period of time and in response to a

decrease in demand for the maximum number of active
connections, reducing the number of open connections
in the single global connection pool.

32. The system of claim 9, wherein the connection pooling
mechanism is further configured, when maintaining a single
global pool of database connections with at least a minimum
non-zero number of idle connections open, to:

in response to a demand for more than a current supply of

connection open in the connection pool, increase the
maximum number of active connections to the maxi-
mum number of connections in the single global pool to
meet the demand, wherein the demand is determined
based on traffic conditions observed for a period of time;
and

after a subsequent period of time and in response to a

decrease in demand for the maximum number of active
connections, reduce the number of open connections in
the single global connection pool.

#* #* #* #* #*

10

15

20

18

